مدل طراحی بهینه معماری برای شبکه های عصبی مصنوعی و به کارگیری آن در پیش بینی مصرف ماهانه نفت گاز کل کشور
نویسندگان
چکیده
یکی از گامهای مهم در توسعه شبکه های عصبی مصنوعی طراحی معماری شبکه است که تأثیر زیادی بر عملکرد شبکه دارد. در طراحی معماری شبکه های عصبی مصنوعی، عواملی از قبیل تعداد لایه های پنهان، تعداد نرون ها در هر لایه، توابع تبدیل و الگوریتم آموزش باید تعیین شوند. محققان در طراحی معماری شبکه به طور عمده از طریق سعی و خطا عمل می کنند و یا اینکه اثر متقابل بین عوامل مختلف در طراحی معماری شبکه را در نظر نمی گیرند. در این تحقیق، یک مدل مبتنی بر تکنیک طراحی آزمایشها برای طراحی بهینه معماری شبکه عصبی با یادگیری تحت نظارت، با توجه به اثر متقابل بین عوامل ذکرشده، ارائه می شود. در این تحقیق، از مدل پیشنهادی برای طراحی معماری شبکه عصبی به منظور پیش بینی مصرف نفت گاز کل کشور استفاده شده است. به منظور مقایسه عملکرد مدل پیشنهادی با استفاده از روش سعی و خطا به عنوان یکی از روشهای مرسوم در طراحی معماری، یک مدل شبکه عصبی برای پیش بینی مصرف نفت گاز توسعه داده شده و طی آن برتری مدل پیشنهادی نشان داده شده است. همچنین برای مقایسه عملکرد شبکه عصبی با روشهای آماری، دو مدل با استفاده از رگرسیون و arima طراحی شده اند. نتایج به دست آمده در پیش بینی مصرف نفت گاز در این بخش نیز نشان می دهد که پیش بینی با شبکه عصبی طراحی شده جوابهای بهتری دارد.
منابع مشابه
کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه
پیشبینی بارش یکی از مهمترین مسائل در زمینه مدیریت بهینه منابع آب در بخشهای مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیشبینی بارش زمستانه استان خراسان رضوی با استفاده از شبکههای عصبی مصنوعی میباشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقهای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...
متن کاملمقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران
با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی زمانی1371:1 تا 1385:11 بوده و از شر...
متن کاملمدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
متن کاملمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
پژوهش های مدیریت در ایرانناشر: دانشگاه تربیت مدرس
ISSN 2322-X200
دوره 12
شماره شماره 4 پیاپی 59 2010
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023